Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analyses of the oligopeptide transporter gene family in poplar and grape.

Identifieur interne : 002F96 ( Main/Exploration ); précédent : 002F95; suivant : 002F97

Analyses of the oligopeptide transporter gene family in poplar and grape.

Auteurs : Jun Cao [République populaire de Chine] ; Jinling Huang ; Yongping Yang ; Xiangyang Hu

Source :

RBID : pubmed:21943393

Descripteurs français

English descriptors

Abstract

BACKGROUND

Oligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis.

RESULTS

In the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection.

CONCLUSIONS

Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants.


DOI: 10.1186/1471-2164-12-465
PubMed: 21943393
PubMed Central: PMC3188535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analyses of the oligopeptide transporter gene family in poplar and grape.</title>
<author>
<name sortKey="Cao, Jun" sort="Cao, Jun" uniqKey="Cao J" first="Jun" last="Cao">Jun Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204</wicri:regionArea>
<wicri:noRegion>650204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jinling" sort="Huang, Jinling" uniqKey="Huang J" first="Jinling" last="Huang">Jinling Huang</name>
</author>
<author>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
</author>
<author>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21943393</idno>
<idno type="pmid">21943393</idno>
<idno type="doi">10.1186/1471-2164-12-465</idno>
<idno type="pmc">PMC3188535</idno>
<idno type="wicri:Area/Main/Corpus">002C83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C83</idno>
<idno type="wicri:Area/Main/Curation">002C83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C83</idno>
<idno type="wicri:Area/Main/Exploration">002C83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analyses of the oligopeptide transporter gene family in poplar and grape.</title>
<author>
<name sortKey="Cao, Jun" sort="Cao, Jun" uniqKey="Cao J" first="Jun" last="Cao">Jun Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204</wicri:regionArea>
<wicri:noRegion>650204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jinling" sort="Huang, Jinling" uniqKey="Huang J" first="Jinling" last="Huang">Jinling Huang</name>
</author>
<author>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
</author>
<author>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Multigene Family (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Vitis (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Membrane Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines de transport membranaire</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Multigene Family</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Oligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21943393</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Analyses of the oligopeptide transporter gene family in poplar and grape.</ArticleTitle>
<Pagination>
<MedlinePgn>465</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-12-465</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Oligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650204, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jinling</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yongping</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xiangyang</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21943393</ArticleId>
<ArticleId IdType="pii">1471-2164-12-465</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-12-465</ArticleId>
<ArticleId IdType="pmc">PMC3188535</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Membr Biol. 2001 Jan-Mar;18(1):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11396605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):207-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):482-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):112-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2004 Jun;47(3):610-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):30150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2004 Jul;27(3):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5675-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1997 Feb;143 ( Pt 2):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9043116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(4):378-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9632836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 May;28(4):729-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9643541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Sep;15(9):763-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genomics. 2004 Aug;1(5):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Feb;3(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15685292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2101-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):769-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jan;223(2):291-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006;6:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16563161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(5):R41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16719932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1446-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Apr;7(2):111-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17136344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):589-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;406:347-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Jul;25(7):1307-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Oct;68(3):301-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18642093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):786-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Aug;70(6):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19468840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Sep 1;25(17):2286-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Nov;50(11):1923-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):191-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20151315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May;62(3):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):197-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Dec 1;584(23):4775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2011 Feb;28(4):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21142222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21171999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2011 Mar;240(2):89-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Dec;16(12):1664-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10605109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):346-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Mar;125(3):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Apr;18(4):453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
<name sortKey="Huang, Jinling" sort="Huang, Jinling" uniqKey="Huang J" first="Jinling" last="Huang">Jinling Huang</name>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cao, Jun" sort="Cao, Jun" uniqKey="Cao J" first="Jun" last="Cao">Jun Cao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21943393
   |texte=   Analyses of the oligopeptide transporter gene family in poplar and grape.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21943393" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020